Compliance Component | DEFINITION | | | | | | | |--|---|--|--|--|--|--| | Name | Secret Key Cryptography | | | | | | | Description | Secret Key Cryptography, also known as Symmetric Key, is a cryptographic method where a single key is shared between the sender and recipient, or is implemented by a single user. | | | | | | | Rationale | Secret Key Cryptography enables confidentiality and integrity. | | | | | | | Benefits | Secret Key Cryptography is generally faster than Public Key Cryptography because it has a higher rate of data throughput and uses shorter keys, and is most often used for encrypting data. Notes: Secret key distribution is prone to interception and/or disclosure, which can lead to impersonation and/or unauthorized disclosure or modification of the data. Secret Key management is more difficult than Public Key because the keys must be changed frequently, and there are many more keys to be managed. Secret key encryption does not support strong authentication and non-repudiation because both parties share the same key. Therefore, it is possible for one party to create a message with the shared secret key and falsely claim it had been sent by the other party. Streaming cipher algorithms (such as RC4) are susceptible to compromise and are not recommended. | | | | | | | ASSOCIATED ARCHITECTURE LEVELS | | | | | | | | List the Domain Name | Security | | | | | | | List the Discipline Nai | ne Technical Controls | | | | | | | List the Technology A | rea Name Cryptography | | | | | | | List Product Compone | ent Name | | | | | | | COMPLIANCE COMPONENT TYPE | | | | | | | | Document the Compli
Component Type | Guideline | | | | | | | Component Sub-type | | | | | | | | COMPLIANCE DETAIL | | | | | | | | State the Guideline, S
or Legislation | There are two algorithms suitable for Secret Key Cryptography: Triple Data Encryption Standard (3DES) Advanced Encryption Standard (AES) Approved key length for Secret Key shall be at least: 168-bits for 3DES 192-bits for AES | | | | | | | Document Source Reference # | Federal Government (Nov 1999) NIST Federal Information Processing Standards (FIPS) 197, Advanced Encryption Standard (AES) (Nov 2001) | | | | | | |---|--|----------------------|--|----------------|--|--| | Standard Organization | | | | | | | | Name | NIST | Website | www | .csrc.nist.gov | | | | Contact Information | inquiries@nist.gov | | | | | | | Government Body | | | | | | | | Name | National Institute of
Standards and Technolog
(NIST), Computer
Security Resource Cente
(CSRC) | Website | www.csrc.nist.gov/publications/fips/index.html | | | | | Contact Information | ontact Information <u>inquiries@nist.gov</u> | | | | | | | KEYWORDS | | | | | | | | List all Keywords AES, 3DES, RC4, symmetric key, block cipher, stream cipher, algorithm | | | | | | | | COMPONENT CLASSIFICATION | | | | | | | | Provide the Classification | ion | | | | | | | Rationale for Component Classification | | | | | | | | Document the Rationale for Component Classification | | | | | | | | Conditional Use Restrictions | | | | | | | | Document the Conditional Use Restrictions Migration Strategy | | | | | | | | Document the Migration Strategy | | | | | | | | Impact Position Statement | | | | | | | | Document the Position Statement on Impact | | | | | | | | CURRENT STATUS | | | | | | | | Provide the Current Status) | ☐ In Development ☐ Una | der Review 🔲 🗸 | Approved | d Rejected | | | | AUDIT TRAIL | | | | | | | | Creation Date 04/13/2004 Date | | Date Accepted / Reje | nte Accepted / Rejected 4/13/04 | | | | | Reason for Rejection | | | | | | | | Last Date Reviewed | | Last Date Updated | | | | | | Reason for Update | | | | | | |